中国农业科学院 官方微信
微信公众号
邮箱
  • 中心概况
    管理班子
    组织架构
    建设背景
    理事会
  • 综合新闻
    中心要闻
    时政要闻
    农科要闻
    工作动态
    科研进展
    通知公告
    人才招聘
  • 人才队伍
    科研团队
  • 科技创新
    科研概况
    科技奖励
    技术专利
    新技术/品种
    论文
    著作
  • 成果转化
    推广成果
    乡村振兴
    科普培训
  • 合作交流
    国内合作
    国际合作
  • 党建文化
    党务工作
    党建活动
中国农业科学院 官方微信
微信公众号
邮箱
  • 首页
  • 中心概况
    管理班子
    组织架构
    建设背景
    理事会
  • 综合新闻
    中心要闻
    时政要闻
    农科要闻
    工作动态
    科研进展
    通知公告
    人才招聘
  • 人才队伍
    科研团队
  • 科技创新
    科研概况
    科技奖励
    技术专利
    新技术/品种
    论文
    著作
  • 成果转化
    推广成果
    乡村振兴
    科普培训
  • 合作交流
    国内合作
    国际合作
  • 党建文化
    党务工作
    党建活动
首页 科技创新 论文
分享到

Comparative Analysis of Genomic Prediction for Production Traits Using Genomic Annotation and a Genome-Wide Association Study at Sequencing Levels in Beef Cattle

发布时间:2024-12-12
字体 小 中 大

Abstract

Leveraging whole-genome sequencing (WGS) that includes the full spectrum of genetic variation provides a better understanding of the biological mechanisms involved in the economically important traits of farm animals. However, the effectiveness of WGS in improving the accuracy of genomic prediction (GP) is limited. Recent genetic analyses of complex traits, such as genome-wide association study (GWAS), have identified numerous genomic regions and potential genes, which can provide valuable prior information for the improvement of genomic selection (GS). In this study, we applied different genome prediction methods to integrate GWAS results and gene feature annotations, which significantly improved the accuracy of GS for beef production traits. The Bayesian models incorporating genomic features showed the highest prediction accuracy, particularly for average daily gain (ADG) and bone weight (BW). Compared to prediction models based on WGS data, GP including biological prior can optimize the prediction accuracy by up to 11.56% for ADG and 14.60% for BW. Also, GP using GBLUP and Bayesian methods integrating biological priors for single-trait GWAS can significantly increase the prediction accuracy. Bayesian methods generally outperformed GBLUP models, with average improvements of 2.25% for ADG, 5.04% for BW, and 3.44% for live weight (LW). Our results indicate that leveraging biological prior knowledge can significantly refine GS models and underline the potential of combining WGS data with biological prior knowledge to further enhance the breeding process.

Keywords: whole-genome sequencing; biological priors; genomic prediction; beef cattle

Agriculture 2024, 14, 2255. 

DOI:https://doi.org/10.3390/agriculture14122255

打印本页
关闭本页

相关新闻

  • 上一篇:

    Divergent Photosynthetic Strategies of Lupinus polyphyllus and Helleborus viridis During Cold Acclimation and Freezing–Thaw Recovery

版权所有:中国农业科学院北方牧业技术创新中心 地址:呼和浩特市土默特左旗沙尔沁镇公布板村北 邮箱:bfzx@caas.cn

京ICP备10039560号-5 京公网安备 11010802025481号